
Unit Testing and TestComplete 2.0: One
Possible Framework

TestComplete White Paper Series - Volume II, Number I - 7/3/2003.

Copyright ©2003 by Robert K. Leahey and AutomatedQA, Corp. All rights reserved.

Table of Contents

Purpose of this Paper 1

Introduction 3

Overview 5

Tutorial 9

Step 1 9

Step 2 9

Step 3 10

Step 4 10

Step 5 11

Step 6 12

Step 7 15

Step 8 15

Step 9 16

Step 10 17

Step 11 17

Step 12 18

Step 13 18

Summary 21

Sidebars 23

A Testing Smorgasbord 23

Why Unit Test in TestComplete? 23

Code Listings 25

Code Listing 1 25

Code Listing 2 25

Code Listing 3 26

Code Listing 4 27

Symbol Reference 35

Classes 35

TtsUnitTestingClass 35

TtsUnitTestingClass.LoggingEnabled 36

TtsUnitTestingClass.SendToCodeSite 36

TtsUnitTestingClass.CompareFiles 36

TtsUnitTestingClass.CurrentTestMessage 37

Part : Table of Contents Unit Testing and TestComplete 2.0: One Possible Framework

©2003 by Robert K. Leahey and AutomatedQA Corp. All rights reserved. I

TtsUnitTestingClass.EvaluateEquality 37

TtsUnitTestingClass.EvaluateForNil 37

TtsUnitTestingClass.FinalizeMessage 38

TtsUnitTestingClass.InitializeMessage 38

TtsUnitTestingClass.InternalTest 38

TtsUnitTestingClass.LogError 38

TtsUnitTestingClass.LogErrorEx 38

TtsUnitTestingClass.LogMessage 38

TtsUnitTestingClass.LogMessageEx 39

TtsUnitTestingClass.LogWarning 39

TtsUnitTestingClass.LogWarningEx 39

TtsUnitTestingClass.NotEqualError 40

TtsUnitTestingClass.StartTestSet 40

TtsUnitTestingClass.StoragesComparisonError 40

TtsUnitTestingClass.Test 40

TtsUnitTestingClass.TestedClassName 40

Files 41

tsUnitTestingClass.pas 41

Index 43

Unit Testing and TestComplete 2.0: One Possible Framework Part : Table of Contents

II ©2003 by Robert K. Leahey and AutomatedQA Corp. All rights reserved.

Purpose of this Paper
This paper is the first of a series designed to provide a focused look at various parts of

TestComplete 2.0 by AutomatedQA Corp. This paper in particular provides one of many possible
solutions to the question of how to perform unit testing (for Delphi applications) with TestComplete.
While this paper stands alone, if you wish to follow along with the tutorial, you will need
TestComplete version 2.x and Delphi. You will also need a working knowledge of these tools. While
this document contains some introductory topics, it still assumes that you know your way around both
TestComplete and Delphi.

Please note once again that this is not the only way to do unit testing with TestComplete. Nor is it
even AutomatedQA’s design — I began work on this framework prior to joining AutomatedQA (and
while it was still AQTest.) I created it primarily because I wanted all my tests to be performed together
and the results to all be recorded to the TestComplete log together. Also because I wanted a unified,
object-based framework with which to conduct my unit tests. TestComplete’s online help contains
information about creating self-testing applications, another way of performing unit tests.

One last thought — TestComplete 3.0 is coming and it contains new features in the area of unit
testing; this paper is currently only for TestComplete 2.0. I’ll write a new paper to deal specifically with
TestComplete 3.0 and unit testing.

Part 1: Purpose of this Paper Unit Testing and TestComplete 2.0: One Possible Framework

©2003 by Robert K. Leahey and AutomatedQA Corp. All rights reserved. 1

http://www.automatedqa.com/products/tc.asp
http://www.automatedqa.com

Introduction
When I first began using TestComplete (AQTest it was called at that time) one of the first things I

wanted to figure out was how to best do unit testing with this tool that was obviously strong at
automating functional and regression testing. (If you’re not familiar with the various types of testing,
see the sidebar, A Testing Smorgasbord (see page 23).) This is not an uncommon goal; there seem to be
many who have the same interest — the fact that you are reading this means that you probably share it.
Even though TestComplete 2.0 is stronger in unit testing, I still use this framework for a variety of
reasons. This paper presents the framework that I currently use for performing my unit testing in
TestComplete. For a discussion on why to use TestComplete at all for unit testing, see the sidebar,
Why Unit Test in TestComplete? (see page 23) There are many different possible approaches to using
TestComplete for unit testing, (I went through 3 different major revisions of this framework before
settling on this one, and in fact, there are elements of this design which borrow from Eric Holton’s
article on unit testing in AQTest) so don’t think that the approach presented here is the
AutomatedQA-authorized “Best Practices” approach. This is merely what I am currently using, and it
will probably have changed by the time you read this. Additionally, the approach that I take in this
framework has been dictated by the type of programming I’ve been doing during the time I’ve been
using TestComplete. It’s entirely possible that the base class presented here will not meet your needs.
With that possibility in mind, I’ve made the base class as extensible as possible. Finally, remember that
this framework is not an alternative to, but rather a supplement to TestComplete’s concept of
Connected, self-testing applications.

Part 2: Introduction Unit Testing and TestComplete 2.0: One Possible Framework

©2003 by Robert K. Leahey and AutomatedQA Corp. All rights reserved. 3

http://www.automatedqa.com/techpapers/aqtest_wp.asp
http://www.automatedqa.com/techpapers/aqtest_wp.asp

Overview
The arguments for unit testing are manifold and well documented, but are not presented here. If

you’re reading this, it’s assumed that you are aware of the benefits of unit testing. The constraints that
precipitated the development of this framework include the following:

• Since I use TestComplete for the automation of some of my functionality testing and all of my
regression testing, I wanted to integrate my unit testing into this automated process, keeping one
entry point for all my automated testing.

• I wanted my code to test itself, like a TestComplete “self-testing application”, yet I wanted the
process to be entirely automated — kicked off from a script in TestComplete. Thus I needed my
solution to work as both an Open Application and as a Connected Application.

• I wanted my unit testing code to exist as an objectified framework (a set of classes) rather than as
occasional calls, de-centralized throughout my application code.

• I wanted my unit testing classes to operate within the unit of the classes they were testing (real
unit testing).

• I wanted my descendant unit testing classes to be independent of TestComplete and its COM
objects. Only the base class (see page 35) should know how to send messages to the TestComplete
Log.

• The entire framework should be conditionally declared so that no part of it would be compiled into
the release version of my applications.

• In short, I wanted my tests to operate as displayed in figure 1.

Part 3: Overview Unit Testing and TestComplete 2.0: One Possible Framework

©2003 by Robert K. Leahey and AutomatedQA Corp. All rights reserved. 5

Figure 1 — my preferred automated unit testing scenario

With all that in mind, I designed my current framework around a base class, TtsUnitTestingClass
(see page 35). You can see the declaration for this class in code listing 1 (see page 25). Basically, this
class functions as an evaluator, a communicator and an all-around organizer. It provides methods for
evaluating equality and for communicating with the TestComplete log. In addition, it organizes the
process of performing unit tests on a class by informing the TestComplete log object when tests are
beginning and ending, and by keeping track of how many cases have been run in a “test set” — more on
that later.

This class is the sole inhabitant of the unit tsUnitTestingClass.pas (see page 41) which can be found
in its entirety in code listing 4 (see page 27). Note that the prefix “ts” denotes the name of my private
consulting company (Thoughtsmithy) prior to joining up with AutomatedQA.

This base class requires some explanation, so we’ll begin with a couple of simple class diagrams to
better display the relationships involved. Notice the simple relationship diagram of figure 2.

Unit Testing and TestComplete 2.0: One Possible Framework Part 3: Overview

6 ©2003 by Robert K. Leahey and AutomatedQA Corp. All rights reserved.

Figure 2 — a simple framework diagram

In the upper left corner, you’ll see the TtsUnitTestingClass (see page 35) abstract base class. It is
responsible for talking to the TestComplete Log object and for comparing values. Descending from
TtsUnitTestingClass (see page 35) are two example testing classes (TmyCustomObject_Tester and
TmyOtherObject_Tester) charged with testing classes (TmyCustomObject and TmyOtherObject) on a
one-to-one basis. This is a convention I choose to follow for clarity and manageability: I create one
testing class descendant for each class to be tested, even if there is more than one tested class in the
same unit. In this arrangement, in order to test TmyCustomObject, you would define your
TmyCustomObject_Tester class (which resides in the same unit as TmyCustomObject), and declare a
set of methods which test the methods of TmyCustomObject. In figure 3 you can see the areas of
responsibility of the objects in this framework. Note that when a TestComplete test run is ready to
begin unit testing, a TestComplete test script starts the process.

Figure 3 — a more detailed view of the framework

In figure 3 this is represented by a TestComplete script clicking Some UI Element. Note that this
could also be accomplished by simply calling a method within the tested application — more on that
later. Whichever method we choose, we create our unit testing classes (TmyTester in the example) and
call their Test (see page 40) methods. The base class’ Test method in turn calls InternalTest (see page
38) (which we have overridden) where all our testing methods get called to test our tested class. Why
the redundant methods (Test and InternalTest)? I simply do this to allow TtsUnitTestingClass (see

Part 3: Overview Unit Testing and TestComplete 2.0: One Possible Framework

©2003 by Robert K. Leahey and AutomatedQA Corp. All rights reserved. 7

page 35) to send a message to the TestComplete Log object before and after calling InternalTest; these
messages indicate the beginning and ending of the testing class’ test sets. During unit testing, our test
class sends results to TestComplete’s Log object (via TtsUnitTestingClass (see page 35)). When we’re
all done with our unit tests, TestComplete (which has been patiently waiting for a sign that unit testing
is complete) resumes control and begins running its automated Functional and Regression tests.

Unit Testing and TestComplete 2.0: One Possible Framework Part 3: Overview

8 ©2003 by Robert K. Leahey and AutomatedQA Corp. All rights reserved.

Tutorial
The best way to understand this framework is to see it in action. To do so, we will create a very

simple set of unit tests for an existing demo project.
TestComplete comes with several sample applications for tutorials and examples of features. Our

tutorial will be utilizing one of the TestComplete sample applications. If you installed TestComplete to
the default location, the application we’ll be using can be found in C:\Program Files\Automated
QA\TestComplete\Samples\Open Apps\OrdersDemo\Delphi.

Step 1
Copy project to new location

Description

Since we’ll be altering the source code for this project, it would be best to create a copy of the
source code so that we don’t lose the original. Create a copy of the entire project directory by copying
and pasting (within Windows Explorer) the directory C:\Program Files\Automated
QA\TestComplete\Samples\Open Apps\OrdersDemo\Delphi. You should now have a folder named
C:\Program Files\Automated QA\TestComplete\Samples\Open Apps\OrdersDemo\Copy of Delphi.
From our copied folder, open the Orders.dpr project in Delphi.

Step 2
Add conditional unit to the UOrderFrm uses clause

Description

Within this project, the unit UOrderFrm contains a class for which we can create some tests:
TDateParser. It is a simple class, but that’s perfect for this tutorial. We will create a descendant of
TtsUnitTestingClass (see page 35) that will test the TDateParser class. To add our testing class to
TDateParser’s unit, we’ll need to add tsUnitTestingClass to the unit’s uses clause. But because we
don’t want any of our testing code to be compiled into our release build, we’ll need to conditionally
include the unit in the uses clause.

Open UOrderFrm.pas and add the following text to the uses clause, just before the final semicolon:

{$IFDEF UNITTESTING} , tsUnitTestingClass {$ENDIF}

The uses clause should now look like this:

uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
StdCtrls, Mask, ExtCtrls, ComCtrls {$IFDEF UNITTESTING} , tsUnitTestingClass {$ENDIF} ;

Notice that only when UNITTESTING is defined in the project’s options will the
tsUnitTestingClass unit will be correctly compiled into the project.

Part 4: Tutorial Unit Testing and TestComplete 2.0: One Possible Framework

©2003 by Robert K. Leahey and AutomatedQA Corp. All rights reserved. 9

Step 3
Add testing class to unit

Description

Next we will begin adding our testing class to the UOrderFrm unit. Remember that we want our
unit testing classes in the same units as the classes they are to test. This is, in part, so that we can take
advantage of Delphi’s class scoping flaw (allowing classes in the same unit to see each other’s private
code) to gain access to our tested class’ private methods. We’ve already added our unit to the uses
clause, so now let’s define our testing class.

Just below the TDateParser declaration, in the interface section, add the following class stub:

{$IFDEF UNITTESTING}
TDateParser_Tester = class (TtsUnitTestingClass)
end ;
{$ENDIF}

Notice that TDateParser_Tester descends from TtsUnitTestingClass (see page 35) and it follows
the naming convention of Txxx_Tester — where ‘xxx” is the class to be tested, in this case,
TDateParser.

Step 4
Override InternalTest and TestedClassName

Description

TtsUnitTestingClass (see page 35) defines two abstract methods that we need to implement:
InternalTest and TestedClassName. TestedClassName is simply the name of the class that this class
will be testing. InternalTest is the business end of this testing class; it’s where we will call all of our
testing methods.

In the class declaration we created in the last step, add the declarations for these two methods. The
result should look like this:

TDateParser_Tester = class (TtsUnitTestingClass)
 protected
 procedure InternalTest; override ;
 function TestedClassName: String ; override ;
end ;

Scroll down to the bottom of the implementation section of the unit, and add the following:

{$IFDEF UNITTESTING}
function TDateParser_Tester.TestedClassName: String ;
begin

end ;

procedure TDateParser_Tester.InternalTest;
begin

end ;
{$ENDIF}

Unit Testing and TestComplete 2.0: One Possible Framework Part 4: Tutorial

10 ©2003 by Robert K. Leahey and AutomatedQA Corp. All rights reserved.

Notice that once again we conditionally enclose the code so that this class only appears in our
testing version of the application.

For TestedClassName, I typically make a call to ClassName rather than returning a string
constant. To do so, add the following line to the implementation of TestedClassName:

 Result := TDateParser.ClassName;

As I said, InternalTest is where we’ll actually call all of our testing methods. For this tutorial we’ll
only have 2 testing methods, and they’ll be discussed shortly.

But first…

Step 5
Add tested objects

Description

In this framework, I always try to test fresh, new instances of the tested class (rather than an
instance that already exists in the application under test, for example.) This affords me the comfort of
knowing that the object under test has not been altered without my knowledge.

With that in mind, add the following code (in red) to the class declaration:

TDateParser_Tester = class (TtsUnitTestingClass)
 private
 FTestedObject: TDateParser;
 procedure InitTestObjects;
 procedure ClearTestObjects;
 protected
 procedure InternalTest; override ;
 function TestedClassName: String ; override ;
end ;

FTestedObject is the class instance that we’ll use for testing. InitTestObjects creates a new
instance of FTestedObject while ClearTestObjects frees the tested object.

Here is the code for these two new methods:

procedure TDateParser_Tester.InitTestObjects;
begin

 if (FTestedObject <> nil) then
 FTestedObject.Free;

 FTestedObject := TDateParser.Create;

end ;

procedure TDateParser_Tester.ClearTestObjects;
begin
 FreeAndNil(FTestedObject);
end ;

Make sure to add this code within the conditional block in the implementation section of the unit.

Part 4: Tutorial Unit Testing and TestComplete 2.0: One Possible Framework

©2003 by Robert K. Leahey and AutomatedQA Corp. All rights reserved. 11

Step 6
Add testing methods

Description

TDateParser has two methods which we’ll test for this example: ParseDate and SetDateString.
By convention, I usually add testing methods on a one-to-one basis for methods to be tested. For

example, to test TDateParser.ParseDate, I’ll create a method TDateParser_Tester.Test_ParseDate. So
with that in mind, add the following two methods to TDateParser_Tester:

To the class declaration, add:

 private
 procedure Test_ParseDate;
 procedure Test_SetDateString;

In the implementation section (inside the conditional $IFDEF block) add:

procedure TDateParser_Tester.Test_ParseDate;
begin

end ;

procedure TDateParser_Tester.Test_SetDateString;
begin

end ;

Next we’ll write the actual code for these testing methods, but some elaboration is required; I’ll
discuss the code as we add it. Find the implementation of Test_ParseDate that you just added. First
remember the obvious, that this method, Test_ParseDate is here for the purpose of testing the
ParseDate method of TDateParser. To that end, we will pass in to ParseDate known values, and
examine the results. We know what the results should be, so if they’re different, we’ll send an error to
the log.

Take a look at TDateParser.ParseDate. Basically when this method is called, the given date is
broken into its elements, which are stored in private fields, and then the method calls UpdateStrings
which adds the date elements to a string list. To test this method, we’ll pass in a date, and then read the
strings in the list to make sure they are correct. For instance, if we pass in the date, “3/15/1980”, the
resulting strings should be “15”, “3”, “March” and “1980”.

What follows, then, is the code for Test_ParseDate.
For local variables, add:

var
 lsResult: String ;
 lDate: TDate;

lsResult is a string in which we’ll store resultant values to be compared against our baseline.
Likewise, lDate is simply a TDate to hold our testing values.

Next, add the following two lines of code to the body of Test_ParseDate:

 InitTestObjects;
 StartTestSet('Testing ParseDate');

Unit Testing and TestComplete 2.0: One Possible Framework Part 4: Tutorial

12 ©2003 by Robert K. Leahey and AutomatedQA Corp. All rights reserved.

InitTestObjects we discussed earlier, it simply creates an instance of our tested class, but
StartTestSet needs some explanation. I’ve tried to automate the messaging functionality of the base
class as much as possible, and to that end, I’ve designed the class to expect sets of tests within a test
method. For instance, you might want to put a calculation through several test cases (standard cases,
boundary cases, divide by zero, etc.) without the overhead of having to define a new message for the
TestComplete log every time you run a case. This framework handles that for you in the form of test
sets. By calling StartTestSet you’re telling the base class that you want to start a net set of cases, all
with the same basic message (“Testing myCalculation” for example). The base class keeps track of a test
index, incrementing and appending that index onto your message each time you run a case. So if you
call StartTestSet(‘Testing myCalculation’); at the start of a set of cases, and then call EvaluateEquality
3 times, the resulting test log will have the following messages (assuming your tests pass):

Testing myCalculation (1) passed.
Testing myCalculation (2) passed.
Testing myCalculation (3) passed.
You can also see an example in figure 4.

Figure 4 — an example test log

So, by calling StartTestSet at the beginning of each set of test cases, you can simplify and automate
the process of message generation for your testing class.

Now we’ll add the next two lines of code to Test_ParseDate:

{**** test 12/30/1899 ****}
lDate := EncodeDate(1899, 12, 30);
FTestedObject.ParseDate(lDate);

This should be fairly self-explanatory: We store in lDate a baseline value of December 30, 1899,
then we call the method we are trying to test, ParseDate. The tested object should now decode the date
and store 4 string representations of the date in its string list (day, month, month name and year). To

Part 4: Tutorial Unit Testing and TestComplete 2.0: One Possible Framework

©2003 by Robert K. Leahey and AutomatedQA Corp. All rights reserved. 13

check this, we’ll get the elements out of the string list and compare them to the values that we know
they should be. The next two lines of code are:

lsResult := FTestedObject[0];
EvaluateEquality('30' , lsResult);

lsResult stores the value of the first element in the tested object’s string list. We know it had better
be “30”, representing the 30th day of December, 1899, so we call EvaluateEquality, passing in “30” as
the expected value, and lsResult as the actual value. Remember that EvaluateEquality will compare
these two values and if they are the same, send a log message indicating that the test passed. If they are
different, a log error will be generated.

We want to test the other 3 generated values, so add the following code next:

lsResult := FTestedObject[1];
EvaluateEquality('12' , lsResult);

lsResult := FTestedObject[2];
EvaluateEquality('December' , lsResult);

lsResult := FTestedObject[3];
EvaluateEquality('1899' , lsResult);

These lines will test the values of the month, month name and year values in the string list.
We’ll want to test more than one date, so add these lines for another test case:

{**** test 1/1/2001 ****}
lDate := EncodeDate(2001, 1, 1);
FTestedObject.ParseDate(lDate);

lsResult := FTestedObject[0];
EvaluateEquality('1' , lsResult);

lsResult := FTestedObject[1];
EvaluateEquality('1' , lsResult);

lsResult := FTestedObject[2];
EvaluateEquality('January' , lsResult);

lsResult := FTestedObject[3];
EvaluateEquality('2001' , lsResult);

Note that each time we call EvaluateEquality our test case index is incremented, so each message to
the log has a new index. This is handy when one test case fails and you’re trying to find out which one
it was.

The last thing to add in our test method is a call to clean up our mess:

ClearTestObjects;

ClearTestObjects frees our tested object.
The final version of this method should look like code listing 2.
Next you can implement Test_SetDateString with the code found in code listing 3.

Unit Testing and TestComplete 2.0: One Possible Framework Part 4: Tutorial

14 ©2003 by Robert K. Leahey and AutomatedQA Corp. All rights reserved.

Step 7
Add testing methods to InternalTest

Description

The next thing we need to do is add our testing methods to InternalTest so that they’ll be called
when our tests are run.

Find the method body of InternalTest which we added earlier to the implementation section and
add to it calls to our two testing methods.

That method should now look like this:

procedure TDateParser_Tester.InternalTest;
begin
 Test_ParseDate;
 Test_SetDateString;
end ;

Now, when we call TDateParser_Tester.Test, InternalTest will in turn be called, thereby
executing our two test methods.

Step 8
Add UnitTestingComplete property to main form

Description

Since the whole point of this framework is to allow TestComplete to run our unit tests as part of
the automated testing whole, we need a way to tell TestComplete when unit testing is finished. When
the unit tests are done, TestComplete can move on with other testing we have scripted. To do this, I
normally create a public Boolean property in my application’s main form called UnitTestingComplete
(conditionally compiled in, of course — it won’t exist in the release version.) Simply stated,
TestComplete watches this property after it starts the unit testing process; when UnitTestingComplete
is True, TestComplete can continue with its other duties.

Until now, we’ve worked only in the UOrderFrm unit. Now open up the MainForm in UMain.pas.
We don’t need to add anything to the uses clause, since we’re already using the unit which contains our
testing class.

Scroll down to the private section of the TMainForm declaration and add the following lines just
after the declaration of FDirty:

 {$IFDEF UNITTESTING}
 FUnitTestingComplete: Boolean;
 {$ENDIF}

Now continue down to the public section and add this code after the declaration of FileName:

 {$IFDEF UNITTESTING}
 property UnitTestingComplete: Boolean read FUnitTestingComplete write
FUnitTestingComplete;
 {$ENDIF}

Part 4: Tutorial Unit Testing and TestComplete 2.0: One Possible Framework

©2003 by Robert K. Leahey and AutomatedQA Corp. All rights reserved. 15

We need to initialize this property so that it will be False when we start the unit tests. Find the
FormCreate method implementation, and add these lines:

{$IFDEF UNITTESTING}
 FUnitTestingComplete := False;
{$ENDIF}

TestComplete will be able to see this property and our test scripts will monitor it so as to know
when it is safe to move on.

Step 9
Add DoUnitTests method to Main form

Description

Next we need to add the method that TestComplete will call to start the unit testing process. Note
that our implementation here is an example of how we can take multiple approaches to this process. I
used to call the DoUnitTests method from a UI element — perhaps a button click. TestComplete
would start the automated testing process, launch the tested application and then click a button to kick
off the unit testing. This approach is described in figures 1 and 3 at the beginning of this paper.
However, now I do things a little differently; now I just have TestComplete call DoUnitTests directly.
Either way works just fine, and since I still have to call DoUnitTests somewhere in my application code
(to force Delphi to link in the code) there’s very little difference ultimately.

To add the DoUnitTests method, find the public section of the TMainForm class declaration and
add the following lines after the declaration of the ChangeOrder method:

 {$IFDEF UNITTESTING}
 procedure DoUnitTests;
 {$ENDIF}

In the implementation section of the unit, add the following method implementation:

{$IFDEF UNITTESTING}
procedure TMainForm.DoUnitTests;
var
 lTester: TDateParser_Tester;
begin

 if not (FUnitTestingComplete) then
 begin
 lTester := TDateParser_Tester.Create;

 try
 lTester.Test;

 finally
 lTester.Free;
 FUnitTestingComplete := True;
 end ;
 end ;
end ;
{$ENDIF}

This method is fairly simple: we check FUnitTestingComplete to make sure we only run these tests
once, then we create an instance of the tester, call its Test method, free the instance and then finally set

Unit Testing and TestComplete 2.0: One Possible Framework Part 4: Tutorial

16 ©2003 by Robert K. Leahey and AutomatedQA Corp. All rights reserved.

FUnitTestingComplete to True.

Step 10
Call DoUnitTests

Description

As I mentioned, if we don’t call DoUnitTests somewhere in our application, Delphi’s ever-diligent
linker will refuse to link in the method, making it impossible for TestComplete to call it. As a result,
whether we use TestComplete to call DoUnitTests directly, or we click on some button which in turn
calls DoUnitTests is immaterial — we wind up with the same code in the application.

Pick some UI event (I chose Records_NewOrderClick) and add:

{$IFDEF UNITTESTING}
 DoUnitTests;
{$ENDIF}

Now the method will be included in your testing build. Note that even though DoUnitTests will be
called anytime you click the chosen button, it doesn’t matter since FUnitTestingComplete prevents the
unit testing from being executed more than once.

Step 11
Define "UNITTESTING" and build

Description

We’re just about done here — one more thing to do in Delphi and then we’ll move to
TestComplete. We need to compile the application with ‘UNITTESTING’ defined so that all our unit
testing code will be built in. In Delphi, go to Project|Options and select the Directories/Conditionals
tab. In the Conditional Defines field, add UNITTESTING and click OK (see figure 5.) Now build the
application. Assuming all is well, TestComplete can now perform automated unit testing on your
application.

Part 4: Tutorial Unit Testing and TestComplete 2.0: One Possible Framework

©2003 by Robert K. Leahey and AutomatedQA Corp. All rights reserved. 17

Figure 5 — Conditional defines in the Project Options dialog.

Step 12
Create a new TestComplete project

Description

Finally we can do some work in the product in question. Launch TestComplete and select
File|New|Project…

In the New Project dialog, select Delphi, DelphiScript.
Specify a location for your new project (C:\Program Files\Automated

QA\TestComplete\Projects\Tutorials is good), and then type “UnitTestingPaperDemo” into the
Project Name field. Finally, click OK (see figure 6.)

Figure 6 — TestComplete’s New Project dialog box

You now have a new project with which to see our unit testing in action.
We need to add the application to our Tested Application list, so select File|Tested Applications…,

click Add and then add the compiled Orders.exe to the list. Click OK when you’re done.

Step 13
Make the call

Description

And now the moment we’ve all been waiting for — alter Unit1 to look as follows:

procedure Test; forward ;

procedure Main;
begin
 try
 TestedApps.RunAll;
 Test;
 except
 Log.Error('Exception' , ExceptionMessage);
 end ;
end ;

procedure Test;
begin

Unit Testing and TestComplete 2.0: One Possible Framework Part 4: Tutorial

18 ©2003 by Robert K. Leahey and AutomatedQA Corp. All rights reserved.

 Sys.Process('Orders').MainForm.DoUnitTests;

 while not(Sys.Process('Orders').MainForm.UnitTestingComplete) do
 Sys.Delay(1000);

 //Do some other testing

end;

That’s it. Main is the project’s main routine, so when you start the test project, Main will launch
our tested application and call Test which will in turn call the main form’s DoUnitTests method. Our
unit tests will run, while TestComplete waits, then when they’re done, TestComplete moves on. Of
course, in this particular case there’s nothing for TestComplete to do afterward, but in a real-world
case, you would execute your other testing scripts after the unit tests are completed.

Part 4: Tutorial Unit Testing and TestComplete 2.0: One Possible Framework

©2003 by Robert K. Leahey and AutomatedQA Corp. All rights reserved. 19

Summary
As you can see, this unit testing framework is rather straightforward and achieves the goal

providing automated unit testing through TestComplete while minimizing the amount of contact each
class has TestComplete’s objects; coalescing most of the common functionality into a single unit testing
base class.

As I’ve said, this is a framework in constant development. It does what I’ve needed, but as my needs
continue to change, no doubt this design will as well. I welcome any suggestions you may have and you
are free to contact me with questions or suggestions at robertl@automatedqa.com.

Note that most of the code in this paper can be found in the Code Listings (see page 25) section.

Part 5: Summary Unit Testing and TestComplete 2.0: One Possible Framework

©2003 by Robert K. Leahey and AutomatedQA Corp. All rights reserved. 21

mailto:robertl@automatedqa.com

Sidebars

A Testing Smorgasbord
A discussion of various types of testing.

Description

Are you unfamiliar with the general concepts of software testing? Then perhaps a quick overview is
in order. Testing in general can be defined as “comparing output against an expected standard.” As it
says in the TestComplete online help:

…the basic test sequence is —

• Define expected output
• Feed corresponding input
• Gather output
• Compare to expected output
• Call for attention if the comparison fails

There are generally three major types of testing: unit, functional and regression.
Unit testing (or module testing) tests the interface between units (modules, functions, libraries,

classes, etc.) and the rest of the code, as well as the user or the system (where this applies). In other
words, unit testing evaluates objects in the problem domain (stuff the user doesn’t see.)

Functional testing tests the interface between the application on one side, and the rest of the system
and users on the other side. In other words, functional testing evaluates objects in the presentation
domain (stuff the user can see.)

Regression testing is based on the idea that tests repeat. To perform a regression test on something
means to run the same test you ran prior to the last modification, and check that you get the same
result you got and accepted then. Thus, each test builds support for the next run of tests. In other
words, regression testing makes sure that your latest changes didn’t break anything and especially that
they didn’t re-break something that was once broken but had been fixed.

TestComplete is an unusual tool in that it handles all three types of testing well.

Why Unit Test in TestComplete?
Reasons why TestComplete is well suited to unit testing.

Description

More than once I’ve shown TestComplete to adherents of Extreme Programming and gotten the
response that it looks like overkill. “Why do I need all that when I have DUnit?” If all you want to do is
unit testing, then this is a very good question. TestComplete would still be a decent way to unit test,
but there are a good many features that would go unused. But the question I would ask is, why do you
think your QA job is finished when you’ve finished unit testing? There seems to be a continuum in the
area of belief in where the responsibility for functional and regression testing lies. Some feel that it is
entirely the responsibility of human testers, while others feel it should be entirely automated. Those

Part 6: Sidebars Unit Testing and TestComplete 2.0: One Possible Framework

©2003 by Robert K. Leahey and AutomatedQA Corp. All rights reserved. 23

who feel that unit testing is all they need to worry about are typically in the former camp, believing
that functional and regression testing should all be handled by humans. Personally, I feel the answer
lies in the middle. While there should always be humans involved in functional and regression testing, I
think that more than half of functional testing should be automated and that the vast majority of
regression should be handled by automation. Studies have shown that any time humans are engaged in
performing the same tasks repeatedly (like regression testing) concentration (and satisfaction) drops off
considerably. I’d much rather automate all that and free my human testers to find new problems.

With all that being said, one of the best reasons to consider TestComplete for unit testing is the
ability to combine all three types of testing into one automated whole. I can automatically run all of my
unit testing, almost all of my regression testing and much of my functional testing at 3:00 in the
morning (when no one’s around) and have a unified result log (and a full history of result logs) waiting
for me when I arrive in the morning. In addition, the automated nature of this unified suite of tests
means that all my tests will be verified every time; I never have to worry about whether some set of
unit testing cases were skipped accidentally.

Overkill? Well, what would you rather be doing at 3:00 in the morning?

Unit Testing and TestComplete 2.0: One Possible Framework Part 6: Sidebars

24 ©2003 by Robert K. Leahey and AutomatedQA Corp. All rights reserved.

Code Listings

Code Listing 1
The TtsUnitTestingClass (see page 35) declaration.

Description

TtsUnitTestingClass = class (TObject)
private
 FLoggingEnabled: Boolean;
 FSendToCodeSite: Boolean;
 FTestIndex: Integer;
 FTestSetMessage: String;
protected
 procedure CompareFiles(const aFileName1, aFileName2, aMsg: String); virtual;
 function CurrentTestMessage: String; virtual;
 procedure EvaluateEquality(aExpected, aActual: Double); overload; virtual;
 procedure EvaluateEquality(aExpected, aActual: Integer); overload; virtual;
 procedure EvaluateEquality(const aExpected, aActual: String); overload; virtual;
 procedure EvaluateEquality(aExpected, aActual: TComponent); overload; virtual;
 procedure EvaluateEquality(aExpected, aActual: TObject; const aExpectedName,
 aActualName: String); overload; virtual;
 procedure EvaluateForNil(aObject: TObject; const aObjectName: String); virtual;
 function FinalizeMessage: String; virtual;
 function InitializeMessage: String; virtual;
 procedure InternalTest; virtual; abstract;
 procedure LogError(const aMessage: String); virtual;
 procedure LogErrorEx(const aMessage, aMessageEx: String; aPriority, aFontStyle,
 aFontColor, aColor: Integer); virtual;
 procedure LogMessage(const aMessage: String); virtual;
 procedure LogMessageEx(const aMessage, aMessageEx: String; aPriority,
 aFontStyle, aFontColor, aColor: Integer); virtual;
 procedure LogWarning(const aMessage: String); virtual;
 procedure LogWarningEx(const aMessage, aMessageEx: String; aPriority,
 aFontStyle, aFontColor, aColor: Integer); virtual;
 procedure NotEqualError(const aExpected, aActual, aMsg: String); virtual;
 procedure StartTestSet(const aTestSetMsg: String); virtual;
 procedure StoragesComparisonError(const aItemName1, aItemName2, aCompareType,
 aMsg, aErrorText: String); virtual;
 function TestedClassName: String; virtual; abstract;
public
 constructor Create;
 procedure Test;
 property LoggingEnabled: Boolean read FLoggingEnabled write FLoggingEnabled;
 property SendToCodeSite: Boolean read FSendToCodeSite write FSendToCodeSite;
end;

Code Listing 2
The implementation of TDateParser_Tester.Test_ParseDate.

Description

procedure TDateParser_Tester.Test_ParseDate;
var
 lsResult: String;
 lDate: TDate;
begin

 InitTestObjects;
 StartTestSet(‘Testing ParseDate’);

Part 7: Code Listings Unit Testing and TestComplete 2.0: One Possible Framework

©2003 by Robert K. Leahey and AutomatedQA Corp. All rights reserved. 25

 {**** test 12/30/1899 ****}
 lDate := EncodeDate(1899, 12, 30);
 FTestedObject.ParseDate(lDate);

 lsResult := FTestedObject[0];
 EvaluateEquality(‘30’, lsResult);

 lsResult := FTestedObject[1];
 EvaluateEquality(‘12’, lsResult);

 lsResult := FTestedObject[2];
 EvaluateEquality(‘December’, lsResult);

 lsResult := FTestedObject[3];
 EvaluateEquality(‘1899’, lsResult);

 {**** test 1/1/2001 ****}
 lDate := EncodeDate(2001, 1, 1);
 FTestedObject.ParseDate(lDate);

 lsResult := FTestedObject[0];
 EvaluateEquality(‘1’, lsResult);

 lsResult := FTestedObject[1];
 EvaluateEquality(‘1’, lsResult);

 lsResult := FTestedObject[2];
 EvaluateEquality(‘January’, lsResult);

 lsResult := FTestedObject[3];
 EvaluateEquality(‘2001’, lsResult);

 ClearTestObjects;

end;

Code Listing 3
The implementation of TDateParser_Tester.Test_SetDateString.

Description

procedure TDateParser_Tester.Test_SetDateString;
var
 lsResult: String;
begin

 InitTestObjects;
 StartTestSet(‘Testing SetDateString’);

 {**** test 2/14/2002 ****}
 FTestedObject.DateString := ‘2/14/2002’;
 lsResult := FTestedObject.FDateString;
 EvaluateEquality(‘2/14/2002’, lsResult);

 lsResult := FTestedObject[0];
 EvaluateEquality(‘14’, lsResult);

 lsResult := FTestedObject[1];
 EvaluateEquality(‘2’, lsResult);

 lsResult := FTestedObject[2];
 EvaluateEquality(‘February’, lsResult);

 lsResult := FTestedObject[3];
 EvaluateEquality(‘2002’, lsResult);

Unit Testing and TestComplete 2.0: One Possible Framework Part 7: Code Listings

26 ©2003 by Robert K. Leahey and AutomatedQA Corp. All rights reserved.

 {**** test 4/17/1970 ****}
 FTestedObject.DateString := ‘4/17/1970’;
 lsResult := FTestedObject.FDateString;
 EvaluateEquality(‘4/17/1970’, lsResult);

 lsResult := FTestedObject[0];
 EvaluateEquality(‘17’, lsResult);

 lsResult := FTestedObject[1];
 EvaluateEquality(‘4’, lsResult);

 lsResult := FTestedObject[2];
 EvaluateEquality(‘April’, lsResult);

 lsResult := FTestedObject[3];
 EvaluateEquality(‘1970’, lsResult);

 ClearTestObjects;

end;

Code Listing 4
The tsUnitTestingClass.pas (see page 41) unit.

Description

{***
**
** tsUnitTestingClass
** As of: 5/27/2003
** ©2002 Thoughtsmithy
** ©2003 AutomatedQA Corp
**
***}

unit tsUnitTestingClass;

interface

uses
 SysUtils, Windows, Messages, Classes, Graphics, Controls,
 Forms, Dialogs, TCClient, TCConnect{$IFDEF CODESITE}, csIntf{$ENDIF};

type
 TtsUnitTestingClass = class (TObject)
 private
 FLoggingEnabled: Boolean;
 FSendToCodeSite: Boolean;
 FTestIndex: Integer;
 FTestSetMessage: String;
 protected
 procedure CompareFiles(const aFileName1, aFileName2, aMsg: String); virtual;
 function CurrentTestMessage: String; virtual;
 procedure EvaluateEquality(aExpected, aActual: Double); overload; virtual;
 procedure EvaluateEquality(aExpected, aActual: Integer); overload; virtual;
 procedure EvaluateEquality(const aExpected, aActual: String); overload;
virtual;
 procedure EvaluateEquality(aExpected, aActual: TComponent); overload; virtual;
 procedure EvaluateEquality(aExpected, aActual: TObject; const aExpectedName,
aActualName:
 String); overload; virtual;
 procedure EvaluateForNil(aObject: TObject; const aObjectName: String); virtual;
 function FinalizeMessage: String; virtual;

Part 7: Code Listings Unit Testing and TestComplete 2.0: One Possible Framework

©2003 by Robert K. Leahey and AutomatedQA Corp. All rights reserved. 27

 function InitializeMessage: String; virtual;
 procedure InternalTest; virtual; abstract;
 procedure LogError(const aMessage: String); virtual;
 procedure LogErrorEx(const aMessage, aMessageEx: String; aPriority,
aFontStyle, aFontColor,
 aColor: Integer); virtual;
 procedure LogMessage(const aMessage: String); virtual;
 procedure LogMessageEx(const aMessage, aMessageEx: String; aPriority,
aFontStyle, aFontColor,
 aColor: Integer); virtual;
 procedure LogWarning(const aMessage: String); virtual;
 procedure LogWarningEx(const aMessage, aMessageEx: String; aPriority,
aFontStyle, aFontColor,
 aColor: Integer); virtual;
 procedure NotEqualError(const aExpected, aActual, aMsg: String); virtual;
 procedure StartTestSet(const aTestSetMsg: String); virtual;
 procedure StoragesComparisonError(const aItemName1, aItemName2, aCompareType,
aMsg, aErrorText:
 String); virtual;
 function TestedClassName: String; virtual; abstract;
 public
 constructor Create;
 procedure Test;
 property LoggingEnabled: Boolean read FLoggingEnabled write FLoggingEnabled;
 property SendToCodeSite: Boolean read FSendToCodeSite write FSendToCodeSite;
 end;

implementation

{:--
-*TtsUnitTestingClass.Create}

constructor TtsUnitTestingClass.Create;
begin
 inherited Create;

 FLoggingEnabled := True;
 FSendToCodeSite := False;

end; { TtsUnitTestingClass.Create() }

{:--
-* TtsUnitTestingClass.CompareFiles }

procedure TtsUnitTestingClass.CompareFiles (const aFileName1, aFileName2, aMsg:
String);
var
 lsErrorText: String;
 lsMsg: String;
begin

 if (aMsg = '') then
 lsMsg := CurrentTestMessage

 else
 lsMsg := aMsg;

 if Files.Compare(aFileName1, aFileName2) then
 LogMessage(lsMsg + ' passed')

 else
 begin
 lsErrorText := Files.LastError;
 StoragesComparisonError(aFileName1, aFilename2, 'Files', lsMsg, lsErrorText);
 end;

Unit Testing and TestComplete 2.0: One Possible Framework Part 7: Code Listings

28 ©2003 by Robert K. Leahey and AutomatedQA Corp. All rights reserved.

 if (aMsg = '') then
 Inc(FTestIndex);

end; { TtsUnitTestingClass.CompareFiles () }

{:--
-* TtsUnitTestingClass.CurrentTestMessage }

function TtsUnitTestingClass.CurrentTestMessage : String;
begin
 Result := Format(FTestSetMessage + ' (%d)', [FTestIndex]);
end; { TtsUnitTestingClass.CurrentTestMessage () }

{:--
-* TtsUnitTestingClass.EvaluateEquality }

procedure TtsUnitTestingClass.EvaluateEquality (aExpected, aActual: Double);
begin
 EvaluateEquality(FloatToStrF(aExpected, ffFixed, 15, 3),
 FloatToStrF(aActual, ffFixed, 15, 3));
end; { TtsUnitTestingClass.EvaluateEquality () }

{:--
-* TtsUnitTestingClass.EvaluateEquality }

procedure TtsUnitTestingClass.EvaluateEquality (aExpected, aActual: Integer);
begin

 if (aExpected <> aActual) then
 NotEqualError(IntToStr(aExpected), IntToStr(aActual), CurrentTestMessage)

 else
 LogMessage(CurrentTestMessage + ' passed');

 Inc(FTestIndex);

end; { TtsUnitTestingClass.EvaluateEquality () }

{:--
-* TtsUnitTestingClass.EvaluateEquality }

procedure TtsUnitTestingClass.EvaluateEquality (const aExpected, aActual: String);
begin

 if (aExpected <> aActual) then
 NotEqualError(aExpected, aActual, CurrentTestMessage)

 else
 LogMessage(CurrentTestMessage + ' passed');

 Inc(FTestIndex);

end; { TtsUnitTestingClass.EvaluateEquality () }

{:--
-* TtsUnitTestingClass.EvaluateEquality }

procedure TtsUnitTestingClass.EvaluateEquality (aExpected, aActual: TComponent);
begin

 if (aExpected <> aActual) then
 NotEqualError(aExpected.Name, aActual.Name, CurrentTestMessage)

 else

Part 7: Code Listings Unit Testing and TestComplete 2.0: One Possible Framework

©2003 by Robert K. Leahey and AutomatedQA Corp. All rights reserved. 29

 LogMessage(CurrentTestMessage + ' passed');

 Inc(FTestIndex);

end; { TtsUnitTestingClass.EvaluateEquality () }

{:--
-* TtsUnitTestingClass.EvaluateEquality }

procedure TtsUnitTestingClass.EvaluateEquality (aExpected, aActual: TObject; const
aExpectedName,
 aActualName: String);
begin

 if (aExpected <> aActual) then
 NotEqualError(aExpectedName, aActualName, CurrentTestMessage)

 else
 LogMessage(CurrentTestMessage + ' passed');

 Inc(FTestIndex);

end; { TtsUnitTestingClass.EvaluateEquality () }

{:--
-* TtsUnitTestingClass.EvaluateForNil }

procedure TtsUnitTestingClass.EvaluateForNil (aObject: TObject; const aObjectName:
String);
begin

 if (aObject <> nil) then
 LogError('Unexpected value: ' + CurrentTestMessage + ' - ' + aObjectName + '
should be nil, but is not')

 else
 LogMessage(CurrentTestMessage + ' passed');

 Inc(FTestIndex);

end; { TtsUnitTestingClass.EvaluateForNil () }

{:--
-* TtsUnitTestingClass.FinalizeMessage }

function TtsUnitTestingClass.FinalizeMessage : String;
begin
 Result := 'Unit tests for ' + TestedClassName + ' completed.';
end; { TtsUnitTestingClass.FinalizeMessage () }

{:--
-* TtsUnitTestingClass.InitializeMessage }

function TtsUnitTestingClass.InitializeMessage : String;
begin
 Result := 'Beginning unit tests for ' + TestedClassName + '.';
end; { TtsUnitTestingClass.InitializeMessage () }

{:--
-* TtsUnitTestingClass.LogError }

procedure TtsUnitTestingClass.LogError (const aMessage: String);
begin

Unit Testing and TestComplete 2.0: One Possible Framework Part 7: Code Listings

30 ©2003 by Robert K. Leahey and AutomatedQA Corp. All rights reserved.

 if FLoggingEnabled then
 {$IFDEF CODESITE}
 if FSendToCodeSite then
 CodeSite.SendError(aMessage)

 else
 {$ENDIF}
 Log.Error(aMessage);

end; { TtsUnitTestingClass.LogError () }

{:--
-* TtsUnitTestingClass.LogErrorEx }

procedure TtsUnitTestingClass.LogErrorEx (const aMessage, aMessageEx: String;
aPriority, aFontStyle,
 aFontColor, aColor: Integer);
begin

 if FLoggingEnabled then
 {$IFDEF CODESITE}
 if FSendToCodeSite then
 CodeSite.SendError(aMessage)

 else
 {$ENDIF}
 Log.Error(aMessage, aMessageEx, aPriority, aFontStyle, aFontColor, aColor);

end; { TtsUnitTestingClass.LogErrorEx () }

{:--
-* TtsUnitTestingClass.LogMessage }

procedure TtsUnitTestingClass.LogMessage (const aMessage: String);
begin

 if FLoggingEnabled then
 {$IFDEF CODESITE}
 if FSendToCodeSite then
 CodeSite.SendMsg(aMessage)

 else
 {$ENDIF}
 Log.Message(aMessage);

end; { TtsUnitTestingClass.LogMessage () }

{:--
-* TtsUnitTestingClass.LogMessageEx }

procedure TtsUnitTestingClass.LogMessageEx (const aMessage, aMessageEx: String;
aPriority,
 aFontStyle, aFontColor, aColor: Integer);
begin

 if FLoggingEnabled then
 {$IFDEF CODESITE}
 if FSendToCodeSite then
 CodeSite.SendMsg(aMessage)

 else
 {$ENDIF}
 Log.Message(aMessage, aMessageEx, aPriority, aFontStyle, aFontColor, aColor);

end; { TtsUnitTestingClass.LogMessageEx () }

Part 7: Code Listings Unit Testing and TestComplete 2.0: One Possible Framework

©2003 by Robert K. Leahey and AutomatedQA Corp. All rights reserved. 31

{:--
-* TtsUnitTestingClass.LogWarning }

procedure TtsUnitTestingClass.LogWarning (const aMessage: String);
begin

 if FLoggingEnabled then
 {$IFDEF CODESITE}
 if FSendToCodeSite then
 CodeSite.SendWarning(aMessage)

 else
 {$ENDIF}
 Log.Warning(aMessage);

end; { TtsUnitTestingClass.LogWarning () }

{:--
-* TtsUnitTestingClass.LogWarningEx }

procedure TtsUnitTestingClass.LogWarningEx (const aMessage, aMessageEx: String;
aPriority,
 aFontStyle, aFontColor, aColor: Integer);
begin

 if FLoggingEnabled then
 {$IFDEF CODESITE}
 if FSendToCodeSite then
 CodeSite.SendWarning(aMessage)

 else
 {$ENDIF}
 Log.Warning(aMessage, aMessageEx, aPriority, aFontStyle, aFontColor, aColor);

end; { TtsUnitTestingClass.LogWarningEx () }

{:--
-* TtsUnitTestingClass.NotEqualError }

procedure TtsUnitTestingClass.NotEqualError (const aExpected, aActual, aMsg:
String);
begin
 LogError(Format('Unexpected value: %s; expected: %s, actual: %s', [aMsg,
aExpected, aActual]));
end; { TtsUnitTestingClass.NotEqualError () }

{:--
-* TtsUnitTestingClass.StartTestSet }

procedure TtsUnitTestingClass.StartTestSet (const aTestSetMsg: String);
begin

 FTestIndex := 1;
 FTestSetMessage := aTestSetMsg;

end; { TtsUnitTestingClass.StartTestSet () }

{:--
-* TtsUnitTestingClass.StoragesComparisonError }

procedure TtsUnitTestingClass.StoragesComparisonError (const aItemName1,
aItemName2, aCompareType,
 aMsg, aErrorText: String);
begin

Unit Testing and TestComplete 2.0: One Possible Framework Part 7: Code Listings

32 ©2003 by Robert K. Leahey and AutomatedQA Corp. All rights reserved.

 LogError(Format('A %s comparison failed: %s; %s did not match %s. Error: %s',
 [aCompareType, aMsg, aItemName1, aItemName2, aErrorText]));
end; { TtsUnitTestingClass.StoragesComparisonError () }

{:--
-* TtsUnitTestingClass.Test }

procedure TtsUnitTestingClass.Test ;
begin

 LogMessageEx(InitializeMessage, '', pmNormal, fmBold, clNavy, clMoneyGreen);
 InternalTest;
 LogMessageEx(FinalizeMessage, '', pmNormal, fmBold, clNavy, clMoneyGreen);

end; { TtsUnitTestingClass.Test () }

end.

Part 7: Code Listings Unit Testing and TestComplete 2.0: One Possible Framework

©2003 by Robert K. Leahey and AutomatedQA Corp. All rights reserved. 33

Symbol Reference

Classes

TtsUnitTestingClass

TtsUnitTestingClass is the base class for all testing classes in this TestComplete unit testing
framework.

Class Hierarchy

TObject
 TtsUnitTestingClass

TtsUnitTestingClass = class (TObject)

File

tsUnitTestingClass (see page 41)

Description

Derive a class from TtsUnitTestingClass to create a testing class that is responsible for testing one
specific class. The new testing class should reside within the same unit as the class to be tested.

Descendant classes should override the abstract methods InternalTest (see page 38) and
TestedClassName (see page 40).

InternalTest (see page 38) should perform all the unit tests for the tested class.
TestedClasName should return the name of the tested class.

Members

Properties

Property Description

LoggingEnabled (see page 36) Enables or disables the sending of messages to the log.

SendToCodeSite (see page 36) Determines whether log messages will be sent to Raize CodeSite instead of to the
TestComplete Log.

Methods

Method Description

 CompareFiles (see page 36) Compares two files and logs the result.

 CurrentTestMessage (see page 37) Used in the support of test sets and messaging.

 EvaluateEquality (see page 37) Compares two items and logs the result.

 EvaluateEquality (see page 37) Compares two items and logs the result.

 EvaluateEquality (see page 37) Compares two items and logs the result.

 EvaluateEquality (see page 37) Compares two items and logs the result.

 EvaluateEquality (see page 37) Compares two items and logs the result.

 EvaluateForNil (see page 37) EvaluateForNil can be called when an object should be nil. Pass the
object reference that should be nil and a name for that object.

 FinalizeMessage (see page 38) Returns the message that is sent to the Log when the unit tests end.

 InitializeMessage (see page 38) Returns the message that is sent to the Log when the unit tests begin.

 InternalTest (see page 38) Called by Test (see page 40) for class-specific testing.

Part 8: Symbol Reference Unit Testing and TestComplete 2.0: One Possible Framework

©2003 by Robert K. Leahey and AutomatedQA Corp. All rights reserved. 35

 LogError (see page 38) Calls Log.Error.

 LogErrorEx (see page 38) Calls Log.Error with full parameter list.

 LogMessage (see page 38) Calls Log.Message.

 LogMessageEx (see page 39) Calls Log.Message with full parameter list.

 LogWarning (see page 39) Calls Log.Warning.

 LogWarningEx (see page 39) Calls Log.Warning with full parameter list.

 NotEqualError (see page 40) Called by EvaluateEquality (see page 37) methods to log an error.

 StartTestSet (see page 40) Initializes internal fields for a new test set.

 StoragesComparisonError (see page 40) Called by the CompareFiles (see page 36) method to log a file
comparison error.

Test (see page 40) Starts the unit testing process for descendant classes.

 TestedClassName (see page 40) Returns a string representation of the classname of the class under test.

Legend

protected

virtual

abstract

TtsUnitTestingClass.LoggingEnabled

Enables or disables the sending of messages to the log.
property LoggingEnabled: Boolean;

Description

LoggingEnabled determines whether the messages generated by calls to EvaluateEquality (see
page 37) will actually be sent to the Log object (or to CodeSite if SendToCodeSite (see page 36) is
True).

TtsUnitTestingClass.SendToCodeSite

Determines whether log messages will be sent to Raize CodeSite instead of to the TestComplete
Log.

property SendToCodeSite: Boolean;

Description

SendToCodeSite provides the option of sending the unit testing messages to CodeSite rather than
to the Log object. Set this property to true to redirect all messages to CodeSite.

Defaults to False.

TtsUnitTestingClass.CompareFiles

Compares two files and logs the result.
procedure CompareFiles(const aFileName1: String ; const aFileName2: String ; const
aMsg: String); virtual ;

Parameters

Parameters Description
const aFileName1: String a file to be compared; this file can either be on disk on in the Files storage.
const aFileName2: String a 2nd file to be compared.
const aMsg: String a message to be sent to the TestComplete Log object.

Unit Testing and TestComplete 2.0: One Possible Framework Part 8: Symbol Reference

36 ©2003 by Robert K. Leahey and AutomatedQA Corp. All rights reserved.

Description

Call CompareFiles to use TestComplete's Files object to perform a comparison.
CompareFiles calls Files.Compare using aFileName1 and aFileName2 (see the TestComplete online

help for more information on the Files object.) If Files.Compare returns false, CompareFiles gets the
latest error message from the Files object and posts it as part of the error message sent to the log.

Notes

The aMsg parameter is optional. If it is empty, CurrentTestMessage (see page 37) is used instead,
allowing this test to be part of a test set (see StartTestSet (see page 40)). The test index is only
incremented if aMsg is empty and CurrentTestMessage (see page 37) is used as part of the logged
message.

See Also

StartTestSet (see page 40)

TtsUnitTestingClass.CurrentTestMessage

Used in the support of test sets and messaging.
function CurrentTestMessage: String ; virtual ;

Description

When one of the EvaluateEquality (see page 37) methods sends a message (or error) to the log, the
result of CurrentTestMessage will be added to the message. See StartTestSet (see page 40) for more
information.

See Also

StartTestSet (see page 40)

TtsUnitTestingClass.EvaluateEquality

Compares two items and logs the result.
procedure EvaluateEquality(aExpected: Double; aActual: Double); virtual ; overload ;
procedure EvaluateEquality(aExpected: Integer; aActual: Integer); virtual ;
overload ;
procedure EvaluateEquality(const aExpected: String ; const aActual: String);
virtual ; overload ;
procedure EvaluateEquality(aExpected: TComponent; aActual: TComponent); virtual ;
overload ;
procedure EvaluateEquality(aExpected: TObject; aActual: TObject; const
aExpectedName: String ; const aActualName: String); virtual ; overload ;

Description

Call EvaluateEquality to do a comparison of two elements. If the elements are equivilent, a message
is posted to the log indicating a passed test. If the elements are inequivilent, an error is posted to the
log.

TtsUnitTestingClass.EvaluateForNil
procedure EvaluateForNil(aObject: TObject; const aObjectName: String); virtual ;

Description

EvaluateForNil can be called when an object should be nil. Pass the object reference that should be
nil and a name for that object.

Part 8: Symbol Reference Unit Testing and TestComplete 2.0: One Possible Framework

©2003 by Robert K. Leahey and AutomatedQA Corp. All rights reserved. 37

TtsUnitTestingClass.FinalizeMessage
function FinalizeMessage: String ; virtual ;

Description

Returns the message that is sent to the Log when the unit tests end.

TtsUnitTestingClass.InitializeMessage
function InitializeMessage: String ; virtual ;

Description

Returns the message that is sent to the Log when the unit tests begin.

TtsUnitTestingClass.InternalTest

Called by Test (see page 40) for class-specific testing.
procedure InternalTest; virtual ; abstract ;

Description

Override InternalTest for your descendant classes to provide class-specific testing. The overridden
InternalTest should call testing methods that perform unit tests particular to the class under test.

TtsUnitTestingClass.LogError

Calls Log.Error.
procedure LogError(const aMessage: String); virtual ;

Description

Passes aMessage on to the TestComplete log object by calling Log.Error. Descendant classes
should call LogError rather than calling Log.Error directly.

See Also

LogErrorEx (see page 38), LogMessage (see page 38), LogMessageEx (see page 39), LogWarning
(see page 39), LogWarningEx (see page 39)

TtsUnitTestingClass.LogErrorEx

Calls Log.Error with full parameter list.
procedure LogErrorEx(const aMessage: String ; const aMessageEx: String ; aPriority:
Integer; aFontStyle: Integer; aFontColor: Integer; aColor: Integer); virtual ;

Description

Passes aMessage and the other parameters on to the TestComplete log object by calling Log.Error.
Descendant classes should call LogErrorEx or LogError (see page 38) rather than calling Log.Error
directly.

See Also

LogError (see page 38), LogMessage (see page 38), LogMessageEx (see page 39), LogWarning (see
page 39), LogWarningEx (see page 39)

TtsUnitTestingClass.LogMessage

Calls Log.Message.
procedure LogMessage(const aMessage: String); virtual ;

Unit Testing and TestComplete 2.0: One Possible Framework Part 8: Symbol Reference

38 ©2003 by Robert K. Leahey and AutomatedQA Corp. All rights reserved.

Description

Passes aMessage on to the TestComplete log object by calling Log.Message. Descendant classes
should call LogError (see page 38) rather than calling Log.Error directly.

See Also

LogError (see page 38), LogErrorEx (see page 38), LogMessageEx (see page 39), LogWarning (see
page 39), LogWarningEx (see page 39)

TtsUnitTestingClass.LogMessageEx

Calls Log.Message with full parameter list.
procedure LogMessageEx(const aMessage: String ; const aMessageEx: String ;
aPriority: Integer; aFontStyle: Integer; aFontColor: Integer; aColor: Integer);
virtual ;

Description

Passes aMessage and the other parameters on to the TestComplete log object by calling
Log.Message. Descendant classes should call LogMessageEx or LogMessage (see page 38) rather than
calling Log.Message directly.

See Also

LogError (see page 38), LogErrorEx (see page 38), LogMessage (see page 38), LogWarning (see
page 39), LogWarningEx (see page 39)

TtsUnitTestingClass.LogWarning

Calls Log.Warning.
procedure LogWarning(const aMessage: String); virtual ;

Description

Passes aMessage on to the TestComplete log object by calling Log.Warning. Descendant classes
should call LogWarning rather than calling Log.Warning directly.

See Also

LogError (see page 38), LogErrorEx (see page 38), LogMessage (see page 38), LogMessageEx (see
page 39), LogWarningEx (see page 39)

TtsUnitTestingClass.LogWarningEx

Calls Log.Warning with full parameter list.
procedure LogWarningEx(const aMessage: String ; const aMessageEx: String ;
aPriority: Integer; aFontStyle: Integer; aFontColor: Integer; aColor: Integer);
virtual ;

Description

Passes aMessage and the other parameters on to the TestComplete log object by calling
Log.Warning. Descendant classes should call LogWarningEx or LogWarning (see page 39) rather
than calling Log.Warning directly.

See Also

LogError (see page 38), LogErrorEx (see page 38), LogMessage (see page 38), LogMessageEx (see
page 39), LogWarning (see page 39)

Part 8: Symbol Reference Unit Testing and TestComplete 2.0: One Possible Framework

©2003 by Robert K. Leahey and AutomatedQA Corp. All rights reserved. 39

TtsUnitTestingClass.NotEqualError

Called by EvaluateEquality (see page 37) methods to log an error.
procedure NotEqualError(const aExpected: String ; const aActual: String ; const
aMsg: String); virtual ;

Description

NotEqualError is called by the EvaluateEquality (see page 37) methods when an Actual value does
not match an Expected value. The error sent to the TestComplete Log appears as, "Unexpected value:
Testing DoSomething (n) expected: SomeValue, actual: SomeOtherValue" where "Testing
DoSomething (n)" is the result of CurrentTestMessage (see page 37).

See Also

CurrentTestMessage (see page 37), EvaluateEquality (see page 37)

TtsUnitTestingClass.StartTestSet

Initializes internal fields for a new test set.
procedure StartTestSet(const aTestSetMsg: String); virtual ;

Description

Causes the testing object to reset the TestIndex and sets the TestSetMessage to aTestSetMsg.
StartTestSet should be called each time a new functionality is to be tested; this way, each time
EvaluateEquality (see page 37) is called, TestIndex is incremented and a message is sent to the log as:

"Testing DoSomething (n): passed." where "n" is the current value of TestIndex.

TtsUnitTestingClass.StoragesComparisonError

Called by the CompareFiles (see page 36) method to log a file comparison error.
procedure StoragesComparisonError(const aItemName1: String ; const aItemName2:
String ; const aCompareType: String ; const aMsg: String ; const aErrorText: String);
virtual ;

Description

NotEqualError (see page 40) is called by the CompareFiles (see page 36) method when
Files.Compare returns False; this can happen either when the files do not match or when there is a real
error.

See Also

CompareFiles (see page 36)

TtsUnitTestingClass.Test

Starts the unit testing process for descendant classes.
procedure Test;

Description

Call Test in order to begin unit testing for the current object. Test in turn calls the abstract method
InternalTest (see page 38).

Descendant classes should override InternalTest (see page 38) in order to describe a set of test
methods to be called.

TtsUnitTestingClass.TestedClassName

Returns a string representation of the classname of the class under test.

Unit Testing and TestComplete 2.0: One Possible Framework Part 8: Symbol Reference

40 ©2003 by Robert K. Leahey and AutomatedQA Corp. All rights reserved.

function TestedClassName: String ; virtual ; abstract ;

Description

Override TestedClassName for your descendant classes to return the name of the class under test.
This value is used by the base class in messaging.

Files

tsUnitTestingClass.pas
Classes

Class Description

TtsUnitTestingClass (see
page 35)

TtsUnitTestingClass is the base class for all testing classes in this TestComplete unit
testing framework.

Part 8: Symbol Reference Unit Testing and TestComplete 2.0: One Possible Framework

©2003 by Robert K. Leahey and AutomatedQA Corp. All rights reserved. 41

Index

A
A Testing Smorgasbord 23

C
Code Listing 1 25

Code Listing 2 25

Code Listing 3 26

Code Listing 4 27

Code Listings 25

I
Introduction 3

O
Overview 5

P
Purpose of this Paper 1

S
Sidebars 23

Step 1 9

Step 10 17

Step 11 17

Step 12 18

Step 13 18

Step 2 9

Step 3 10

Step 4 10

Step 5 11

Step 6 12

Step 7 15

Step 8 15

Step 9 16

Summary 21

T
tsUnitTestingClass.pas 41

TtsUnitTestingClass 35

CompareFiles 36

CurrentTestMessage 37

EvaluateEquality 37

EvaluateForNil 37

FinalizeMessage 38

InitializeMessage 38

InternalTest 38

LogError 38

LogErrorEx 38

LoggingEnabled 36

LogMessage 38

LogMessageEx 39

LogWarning 39

LogWarningEx 39

NotEqualError 40

SendToCodeSite 36

StartTestSet 40

StoragesComparisonError 40

Test 40

TestedClassName 40

Tutorial 9

W
Why Unit Test in TestComplete? 23

Part 9: Index Unit Testing and TestComplete 2.0: One Possible Framework

©2003 by Robert K. Leahey and AutomatedQA Corp. All rights reserved. 43

	Unit Testing and TestComplete 2.0: One Possible Framework
	 Table of Contents
	1 Purpose of this Paper
	2 Introduction
	3 Overview
	4 Tutorial
	4.1 Step 1
	4.2 Step 2
	4.3 Step 3
	4.4 Step 4
	4.5 Step 5
	4.6 Step 6
	4.7 Step 7
	4.8 Step 8
	4.9 Step 9
	4.10 Step 10
	4.11 Step 11
	4.12 Step 12
	4.13 Step 13

	5 Summary
	6 Sidebars
	6.1 A Testing Smorgasbord
	6.2 Why Unit Test in TestComplete?

	7 Code Listings
	7.1 Code Listing 1
	7.2 Code Listing 2
	7.3 Code Listing 3
	7.4 Code Listing 4

	8 Symbol Reference
	8.1 Classes
	8.1.1 TtsUnitTestingClass
	8.1.1.1 TtsUnitTestingClass.LoggingEnabled
	8.1.1.2 TtsUnitTestingClass.SendToCodeSite
	8.1.1.3 TtsUnitTestingClass.CompareFiles
	8.1.1.4 TtsUnitTestingClass.CurrentTestMessage
	8.1.1.5 TtsUnitTestingClass.EvaluateEquality
	8.1.1.6 TtsUnitTestingClass.EvaluateForNil
	8.1.1.7 TtsUnitTestingClass.FinalizeMessage
	8.1.1.8 TtsUnitTestingClass.InitializeMessage
	8.1.1.9 TtsUnitTestingClass.InternalTest
	8.1.1.10 TtsUnitTestingClass.LogError
	8.1.1.11 TtsUnitTestingClass.LogErrorEx
	8.1.1.12 TtsUnitTestingClass.LogMessage
	8.1.1.13 TtsUnitTestingClass.LogMessageEx
	8.1.1.14 TtsUnitTestingClass.LogWarning
	8.1.1.15 TtsUnitTestingClass.LogWarningEx
	8.1.1.16 TtsUnitTestingClass.NotEqualError
	8.1.1.17 TtsUnitTestingClass.StartTestSet
	8.1.1.18 TtsUnitTestingClass.StoragesComparisonError
	8.1.1.19 TtsUnitTestingClass.Test
	8.1.1.20 TtsUnitTestingClass.TestedClassName

	8.2 Files
	8.2.1 tsUnitTestingClass.pas

	9 Index

